Foundations are usually classified as either reactive or non-reactive to changes in their moisture content.

Reactive soils are typically clay soils. All of these are plastic soils, shrinking and swelling rapidly as their moisture content decreases or increases.

For example, reactive clays may swell and retain moisture when saturated which can cause deformation, particularly in modern row housing with concrete slab floors, and shrink and collapse when water is removed from them by excessive evaporation or by the action of nearby trees.

Non-reactive soils are such soils as rock, gravel, shale or sand whose volume does not increase or decrease depending on the moisture content. The structural engineer or Engineers Department of your local Council, or Geotechnical Engineers who work locally may be able to provide information to you on the type of soil your house is built on. This information can be useful as cracking caused by drying-out of normal reactive soils can often be simply remedied, whereas owners of houses built on very reactive soils or on filled land which has subsided permanently may have to pursue more elaborate solutions such as underpinning.

DIFFERENT TYPES OF SOIL MOVE, BUT WHAT CAUSES THEM TO MOVE? WHAT ARE THE REMEDIES?

Movement in foundations is caused principally by:

1. Moisture movement in reactive soils.
2. Uneven settlement of the foundations.
4. Building on variable foundations.
5. Additions to existing buildings.
6. Excessive vibration.

1. Moisture movement in reactive soils

Experts suggest that changes in the water content of clay-type soils causes up to 90% of all cracking problems in houses. So what factors affect the water content in the soil?

(a) Water extracted by trees and shrubs

The greatest damage occurs when trees are planted after construction.

Contrary to popular belief, it is rarely the growth or uplift of the tap roots of big trees which disturb the foundations. The damage is done by the plants extracting considerable...
quantities of moisture from the soil which reduces the volume of the soil, causing footings to subside in that area and cracks in the brickwall to appear.

This phenomenon is known as tree drying settlement. The way it works is the tree takes water from the soil by a system of fine hair-like roots. The moisture is then transported to the trunk of the tree via the main tap roots. The astonishing fact is that, depending on the type and age of the tree, this fine root system can extend over several hundred metres and the amount of water transpired daily by a tree can be several hundred litres.

A more commonly accepted formula is that a tree's root system will extend for a horizontal distance equal to its height. In a line of trees, where competition for water may exist, the horizontal root spread is one and half times the tree height. Of course, if the water available in the soil is sufficient to meet the tree's transpiration rate, no damage will occur.

Some remedies
Now the good news. If you take moisture out of clay soils, you can put it back.

In one case seen by Architect Centre a row of large trees within 3 metres of a house had, during a prolonged dry spell, caused substantial cracking and distortion of the wall nearest to them. The trees were removed and the area flooded with water. Within two months the clay soil had absorbed the water and heaved some 35mm to the original position, closing nearly all the gaps completely.

So, if some cracks appear in your house for the first time during a dry season, the best thing is to water the soil and do nothing more. Wait until after the next wet season and see if they close up by themselves. Try and keep the soil near any large trees constantly wet and don’t be tempted to fill the cracks with anything rigid which will prevent them closing naturally, as more cracking could develop in response elsewhere.

If cracks are more serious, generally large enough to insert one or more fingers, the tree, shrub or root system responsible for the damage should be removed. Pruning is of short term value only. Local flooding of the area will accelerate the heave recovery of the foundations.

Alternatives to cutting down the trees are root barriers, made from concrete or other impermeable materials such as fibre cement sheet wrapped in plastic and inserted to a depth greater than the surface root system of the appropriate tree, between the tree and the affected footing.

Another remedial system aimed at retaining the trees, is to drill holes into the soil approximately 1.5m deep and close to the wall which has subsided and cracked. Into these holes is poured water to a constant level to get moisture back to the soil, and also copper sulphate or other root suppressant chemicals to repel the approach of the tree's roots.

In conjunction with this, holes are drilled into the soil on the side of the tree away from the house. These holes are then filled with water and nutrients which will attract tree roots in their general direction.

This system does require maintenance in keeping the holes filled with water (although this could be accomplished with an automatic irrigation system) and replenishing supplies of repellent chemicals and nutrients.

Finally, we come to the remedy known as underpinning, an expensive operation and only to be undertaken if all else fails. Underpinning can mean two things: first, the removal of soil below an existing footing and its replacement with (usually) concrete. The second is the removal of the lower defective part of the wall and its replacement with masonry.

Although underpinning is not a complicated operation, it is slow and awkward and must be done properly to be effective. The new footing system must be designed properly to start with if problems are to be avoided. It would be wise to ask to see the Engineer’s drawings of any proposal.

It would also be wise to obtain several quotations from firms specialising in underpinning. Ask to see successfully completed jobs and make sure a guarantee will be forthcoming.

A word of warning at this point about organisations which offer cure-alls for cracking. Architect Centre has found...
that some of these firms exaggerate the dangers involved with some small cracks and recommend expensive patent treatments or unnecessary underpinning where the cracks might simply respond to a bit of water added to the soil.

Remember that a company offering a particular treatment will probably be biased in favour of using it regardless.

A non-involved, experienced person such as an Engineer or Architect should be consulted first. They won’t be inclined to overlook the more humble remedies.

Planting trees

When planning to plant trees, the idea is to also consider the strength of the footings under the house.

For example, an old brick house with stone footings on a clay foundation offers little resistance to drying settlement whereas a well designed concrete slab may tolerate even a heavily planted garden.

As a rule of thumb, trees should be planted at a distance from the house equivalent to their mature height, although trees may be planted closer and culled as they grow.

Trees to be wary of:

Most tropical trees have high water requirements for growth and therefore should be either avoided or further information obtained on the suitability of that tree being located near a dwelling.

The following is a list of common trees and plants to be wary of. The list is not meant to be totally comprehensive but can be taken as a general guide. Further information may be available from your Landscape Architect.

(Note: Height of tree and spread of roots can vary dramatically from region to region depending on climate, soil type, rainfall, etc.) Common names may vary.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Botanical Name</th>
<th>Mature Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>African tulip tree</td>
<td>Spathodea campanulata</td>
<td>6-15</td>
</tr>
<tr>
<td>Athel tree</td>
<td>Tamaris aphylla</td>
<td>Up to 6 variable</td>
</tr>
<tr>
<td>Bamboos</td>
<td>Phyllastachus species</td>
<td>9-18 variable</td>
</tr>
<tr>
<td>Black bean</td>
<td>Castanospermum australe</td>
<td>9-15 variable</td>
</tr>
<tr>
<td>Black locust</td>
<td>Robinia pseudoacacia</td>
<td>6-15 variable</td>
</tr>
<tr>
<td>Bougainvilleas</td>
<td>Bougainvillea species</td>
<td>9-15 variable</td>
</tr>
<tr>
<td>Camphor laurel</td>
<td>Cinnamonum camphora</td>
<td>6-15 variable</td>
</tr>
<tr>
<td>Cedars</td>
<td>Cedrus species</td>
<td>9-15 variable</td>
</tr>
<tr>
<td>Claret ash</td>
<td>Fraxinus "Raywood"</td>
<td>Up to 24 variable</td>
</tr>
<tr>
<td>Coral trees</td>
<td>Erythrina species</td>
<td>variable</td>
</tr>
<tr>
<td>Cypress</td>
<td>Cupressus species</td>
<td>variable</td>
</tr>
<tr>
<td>Date palms</td>
<td>Phoenix species</td>
<td>Up to 30</td>
</tr>
<tr>
<td>Elms</td>
<td>Ulmus species</td>
<td>Up to 20</td>
</tr>
<tr>
<td>English ash</td>
<td>Robinia psuedoacacia</td>
<td>9-15</td>
</tr>
<tr>
<td>False acacia</td>
<td>Ficus species</td>
<td>Up to 30</td>
</tr>
<tr>
<td>Figs</td>
<td>Ficus species</td>
<td>6-30</td>
</tr>
<tr>
<td>Flame tree</td>
<td>Brachychiton acerifolium</td>
<td>Up to 60</td>
</tr>
<tr>
<td>Gum tree</td>
<td>(most Eucalyptus species)</td>
<td>5-12 variable</td>
</tr>
<tr>
<td>Jacaranda</td>
<td>Jacaranda mimosaepholia</td>
<td>Up to 15</td>
</tr>
<tr>
<td>Magnolias</td>
<td>Magnolia species</td>
<td>variable</td>
</tr>
<tr>
<td>Mango</td>
<td>Mangifera indica</td>
<td>10-18</td>
</tr>
<tr>
<td>Oaks</td>
<td>Quercus species</td>
<td>Up to 20</td>
</tr>
<tr>
<td>Pampas grass</td>
<td>Cortaderia sellana</td>
<td>2.5-3.5</td>
</tr>
<tr>
<td>Pepper tree</td>
<td>Schinus molle</td>
<td>6-15</td>
</tr>
<tr>
<td>Pines</td>
<td>Pinus species</td>
<td>Up to 30</td>
</tr>
<tr>
<td>Planes</td>
<td>Platanus species</td>
<td>15-36</td>
</tr>
<tr>
<td>Poinciana</td>
<td>Delonix regia</td>
<td>variable</td>
</tr>
<tr>
<td>Pyramid tree</td>
<td>Lagunaria patersonia</td>
<td>6-12</td>
</tr>
<tr>
<td>Tipuana</td>
<td>Tipuana tipu</td>
<td>10-20</td>
</tr>
<tr>
<td>Umbrella tree</td>
<td>Schefflera actinophylla</td>
<td>Up to 8</td>
</tr>
<tr>
<td>Willows</td>
<td>Salix Species</td>
<td>9-15</td>
</tr>
</tbody>
</table>

(b) **Damage caused by solar radiation**

While drying out of soil by trees is the most common reason for cracking in brickwork, some clays are also very susceptible to drying out by direct solar radiation (direct sun).
Cracking in Brickwork

A side of the house that received a high amount of solar heat is most likely to be affected and stepped diagonal cracking is the most common symptom, usually occurring at the east (morning sun) and west (afternoon sun) corner of a building.

Again underpinning should be considered only as a last resort and more simple remedies tried first.

Mulching of garden beds around the house will cut down loss of moisture by solar radiation. Another measure is to provide an impermeable ground cover around the house together with a vertical impermeable barrier or border which should preferably be taken down to a depth where the moisture content of the soil is constant, approximately 300mm to 600mm.

(c) Migration of moisture
The movement of moisture beneath a building can produce the phenomenon known as long term dome and saucer effect.

The dome effect is a slow heaving of the soil caused by movement of moisture from the perimeter of the house to its centre, and the saucer effect is moisture moving in the opposite direction, from the centre towards the perimeter.

The dome effect causes the walls to tilt outwards and the restraining influence of the roof produces horizontal cracks on the outside wall. These will be wider on the outside surface rather than the inner.

The long term saucer effect causes the external walls to tilt inwards and partition walls to sag. Cracking may be similar to that seen with the dome effect but the width of the cracks will be greater on the internal surface of the walls.

The most economical solution, and one which gives good results where damage is not too severe, is to improve the sub-floor ventilation so that the atmospheric conditions under the floor and those outside are not too different.

2. Uneven settlement of foundations
Where a particularly heavy load is placed on the foundations such as a large column, movement may occur as moisture is squeezed out of the soil or the soil readjusts itself. This consolidation will stop when the soil has finally compacted enough to support the load.

Cracks which may result from movement during compaction could be measured to see if and when the movement has ceased.

Then a decision can be made as to whether the cracks may simply be patched up or if the size of the existing footing needs to be increased to support the load.

Many coastal areas in Malaysia or low lying coastal areas have soft soil conditions like silty clay and marine clay which are prone to long term settlement; which may give rise to long term differential settlement between the building and surrounding roads, apron slabs, footpaths and drains.

A typical example of differential settlement is caused when the building area has been piled; and the surrounding areas are not (driveway slab, perimeter slabs, external walkways etc.) resulting is unsightly cracks.

Remedies are not usually easy due to the existing soil conditions of the overall soil conditions; however cosmetic repairs can be done to “top up” or fill in the settlement cracks and monitor the repairs over time.

In some serious conditions where the settlement cracks are found within the building and cracks found in walls, floors and roofs; we recommend an Engineer or Architect Centre conduct an inspection to determine the defect and propose the best methods of repairs.

3. Sliding surface layers
Overloading can also cause shear failure in the soil. The soil can slip in a downward, sideways and upward movement allowing the footings to settle as a result.

A typical example may be caused by an excavation on an adjacent site to a greater depth than the footing, thus robbing it of lateral support and causing it to tilt towards the hole.

Flooding or diversion of natural drainage channels beneath the footing can produce shear failure as some soils, especially clay, lose cohesion when too much water is added to them.

The cracks occurring will more often be vertical than diagonal.

Service pipes in the ground should be carefully checked to see that they are unbroken. This check should also cover existing drains, down pipes and gutters.
4. Building on variable foundations
Finding part-rock, part-shale, or part-clay on a flat site is possible but more probable on a sloping site where part of the slope has been cut into and the material cut out has been used as fill to extend the horizontal surface for the house.

The fill can compress more readily and uneven settlement can 'bend' the house at the point where the two materials meet. The resulting cracks will be vertical, wider at the top than at the bottom.

The remedy may have to be underpinning or some comparable method to spread the load more evenly.

Houses built on fill land will be subject to settlement which will frequently be uneven. If the fill is loose, but not uniformly over the site, the cracking will be extensive and unpredictable.

Loose but uniform fill can produce either stepped or vertical cracks.

Pier and beam footings can be used to underpin the building or, if the fill is reasonably compact, widening existing strip footings may be sufficient.

Either solution requires design by an engineer and implementation by a reputable underpinning contractor.

5. Additions to buildings
Building an addition onto a house can impose a load intensity on the soil different to that which is there already and so cause differential settlement. Even if the loading intensities are similar, the difference in time between when the two settlements occurred can be enough to create cracks.

These may be vertical or cogged and normally occur near where the new work keys into the old.

Measuring the crack to assess when the new settlement is complete and then patching the crack is probably the best method. Again underpinning the new work should only be contemplated in extreme cases.

6. Excessive vibration
Damage caused by vibration from earth tremors, heavy traffic or pile driving is fairly rare, however if the vibration is great enough to actually cause the foundation to move, cracking can occur. In this case a rock foundation is not the best as it can easily transmit vibrations to the building.

The cracks show up irregularly and if the source of the vibration can't be removed, a possible remedy is the installation of anti-vibration mats beneath the footings. If the source of the vibration is some machine operated within the building, these mats could be placed between the machine and the floor.

SOME GENERAL MAINTENANCE TIPS
1. Don’t plant trees or allow them to exist closer to the house than their natural height unless their roots are discouraged or contained in some way as in the systems described.

2. Keep the garden and lawns around the house evenly damp throughout the drier months. Don’t neglect one side of the house just because nothing much grows in the area.

3. Regularly check existing drains, down-pipes, guttering and service piping to ensure no leakages occur over the life of the building.

4. If you think your house needs underpinning or other building work carried out, make sure you have an independent assessment undertaken first by an architect or engineer. Then obtain at least three quotations and make sure you have a firm written contract with the company. Architect Centre can help you here with an inspection and recommendation.

All the above information relates to cracking associated with movement of the foundations caused in the most part by drying out of the soil.

Statistics compiled by Architect Centre show that cracking from other causes is relatively rare, but can occur when various elements of the building itself move. For example movement of steel frames with brick infill panels or the shrinking of concrete elements.

Cracking can also be due to the expansion or shrinkage of the clay brickwork itself.

Remember that the best way of avoiding expensive problems is to be aware of them before you purchase your house. Architect Centre has carried out thousands of home inspections for home owners and prospective buyers, to help them make a realistic appraisal of the property before buying, renovating or repairing.